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Thisresear ch evaluatesefficiency levelsof individual paratransit systems
in Canadawith the specific obj ective of identifying themost efficient agen-
ciesand thesourcesof their efficiency. Through identification of the most
efficient systems along with the influencing factors, new service policies
and management and oper ational strategies might be developed for
improved resour ce utilization and quality of services. The research
appliesthedata envelopment analysismethodology, which isamathemat-
ical programming techniquefor determining the efficiency of individual
systemsas compar ed with their peersin multiple performance measures.
Annual operating data from 2001 to 2003 as reported by the Canadian
Urban Transit Association are used in thisanalysis. A bootstrap regres-
sion analysisisperformed toidentify thepossiblerelationship between the
efficiency of a paratransit system and measur able operating or manage-
rial factors that affect the performance of paratransit systems. The
regression analysis allows for the calculation of confidence intervals and
biasfor the efficiency scores.

Demand-responsive paratransit is considered to be an important pub-
lic transportation mode in most municipalities in North America, pro-
viding services to people with special requirements, such as seniors
and people with disabilities. In the past 10 years, paratransit has
expanded significantly in the United States and Canada in order to
accommodate increased demand. Because of its door-to-door service
approach with a fare scheme comparable with regular transit, most
paratransit systems in North America rely heavily on subsidies to
cover their operating costs. According to the American Public Tran-
sit Association, the total operating expense of paratransit services
in the United States exceeded $1.2 billion with only $173 million
collected in fares. The Canadian Urban Transit Association (CUTA)
reported that the total operating expenses of 50 Canadian paratransit
agencies amounted to approximately $150 million (Canadian dol-
lars), of which only 10% was recovered from fare revenues. It is
projected that the demand for paratransit services will increase sig-
nificantly in the near future due to the aging population. This growth
in demand will place even greater pressure on paratransit agencies to
find ways to reduce agencies’ operating costs and improve service
efficiency.
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The first step toward performance improvement for the paratran-
sit industry is to benchmark existing service levels. Specifically, the
following questions may be asked. Who are the best performers in
the paratransit industry? What is the maximum achievable efficiency
given the demand profile and operating environment? What can be
accomplished either through changing service policies or more
aggressively pursuing ways to reduce vehicle hours?

To address all these questions requires a methodology to quantify
the efficiency of a paratransit system and understand how it is
affected by various system factors. Quantifying the performance of
paratransit systems is, however, a challenging task because it is influ-
enced by a large number of factors, many of which are outside of the
control of the supplying agency. Variables—such as the size of the
service area, passenger demand density, spatial and temporal distri-
butions, and average trip length—are external inputs to the agency’s
decision-making process. However, many so-called managerial fac-
tors are within the control of the service providers, such as service
policies (e.g., pickup windows, curb-to-curb versus door-to-door ser-
vice), fleet mix (e.g., fleet size and vehicle type), trip scheduling
method (i.e., manual versus computerized), and driver and dispatcher
training.

This research introduces a technique called data envelopment
analysis (DEA) for evaluating the efficiency of paratransit service sys-
tems as a function of both external and internal variables. In particu-
lar, this research assesses the suitability of the DEA approach for
evaluating the efficiency of paratransit systems using data from the
Canadian paratransit sector. This approach identifies the best perform-
ers of the Canadian paratransit systems and, if possible, the factors
that are associated with these service systems.

MEASURING PARATRANSIT EFFICIENCY

As for any service systems, the planning, management, and opera-
tion of paratransit services are done to achieve a balance between the
efficiency (or productivity) of the service and the quality of service
experienced by passengers (1). By definition, the term “efficiency”
reflects the quantity of output generated as a function of the inputs to
the system. In paratransit, the output can be the number of passen-
gers serviced and/or total passenger kilometers covered as a function
of, for example, the number of vehicle hours, number of employees,
total operating costs, or other factors. In contrast, quality of service
is a measure representing the degree to which the outputs produced
by the system meet the requirements of the users. In the case of para-
transit, quality of service can be estimated by specific measures of
the length of pickup and drop-off time windows, ride directness, or
riding comfort.
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Oftentimes, efficiency and service quality are competing objec-
tives. Consider the example of exclusive-ride systems versus shared-
ride systems. In the first case, a single rider is transported directly
from origin to destination, providing the fastest, most convenient
service. This approach, of course, is also most expensive on a dol-
lar per passenger-kilometer basis. With shared-ride service, vehicles
are routed with intermediate pickups and drop-offs such that vehi-
cle trips are minimized. Obviously, shared-ride systems increase
operating efficiency by reducing the total vehicle miles traveled
and the number of vehicles required, but decrease passenger qual-
ity of service by increasing average ride time and the variability of
promised pickup and arrival times. Given that demand for the ser-
vice is a function of the quality of the service, paratransit operators
need to be cognizant that overemphasizing efficiency at the
expense of quality of service may result in greatly decreased rider-
ship. This research focuses only on issues related to the efficiency
of a paratransit system.

Efficiency of a system can be viewed from two different perspec-
tives: economically and technically. Economic efficiency measures
the relationship between the value of the output and the value of the
input, and therefore can help examine the profitability of a system for
an investment. When examining the economic efficiency, the value
of output over the value of input provides an absolute measure of effi-
ciency. In contrast, technical efficiency directly compares the output
with the input. When a system is called inefficient, it means that one
could achieve the desired output with less input, or that the input
employed could produce more of the output desired. This research
focuses particularly on the operational productivity of paratransit
systems, that is, technical efficiency. Measures of efficiency that are
commonly used in practice are listed in Table 1.

There are two main approaches that can be used to measure the
technical efficiency of a system: parametric and nonparametric fron-
tier approaches. A parametric approach specifies a functional form
for relationship between system output and inputs and environmen-
tal factors. The functional relationship can be established through a
regression technique using operational data obtained from the systems
under consideration. Based on the functional relationship, the effi-
ciency level that can be expected from a given system can be estimated
on the basis of its input and environmental factors. This estimated effi-
ciency can then be compared with what is actually observed, provid-

TABLE 1 Common Efficiency Measures for
Urban Transit

Efficiency Measure Efficiency Indicator

Cost efficiency Cost per km/mi
Cost per hour
Cost per vehicle

Cost per passenger trip

Cost-effectiveness Revenue per passenger trip
Ridership per expense

Passenger trips per km/mi

Service utilization efficiency Passenger trips per hour
Passenger trips per capital
Km/mi per vehicle

Vehicle utilization efficiency Passenger trips per employee

Labor productivity Vehicle miles per employee
Vehicle km/mi per capital
Total vehicle km/mi
Service areas

Coverage
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ing an indication of how efficient a system is currently operating. Past
research has indicated that parametric approaches are most applicable
to industries with well-defined technologies (2).

In contrast, a nonparametric approach does not require explicit
specification of the form of the underlying production relationship and
is most suitable for noncompetitive industry with imprecise technolo-
gies, such as the service sector (3). This following section introduces
a nonparametric approach—DEA—which has been applied in this
research to evaluate the technical efficiency of paratransit transit
systems. A detailed discussion on DEA is provided.

DEA APPROACH

DEA is commonly used to evaluate the efficiency of a group of
producers (also called decision-making units or DMUSs), such as
organizations, firms, departments, or operating units. DEA is a
nonparametric frontier approach, which was originally proposed by
Farrell (4). The original motivation was the need for a simple measure
of efficiency that is capable of accounting for multiple inputs. A typ-
ical statistical approach evaluates producers relative to an average
producer. In contrast, DEA compares each producer with only the
“best” producers. A fundamental assumption behind DEA is that if a
given producer, A, is capable of producing Y(A) units of output with
X(A) inputs, then other producers should also be able to do the same
if they were to operate efficiently. Similarly, if producer B is capable
of producing Y(B) units of output with X(B) inputs, then other pro-
ducers should also be capable of the same production schedule. Pro-
ducers A, B, and others can then be combined to form a composite
producer with composite inputs and composite outputs. Because this
composite producer does not necessarily exist, it is sometimes called
a virtual producer.

DEA has gained increasing popularity as a vital tool for evaluating
efficiency of almost all transportation modes. For example, Chu et al.
(5), Karlaftis (6), and Boame (7) applied DEA to examine the techni-
cal efficiency of U.S. and Canadian public transportation systems.
Oum et al. (8) provided an overview of various DEA applications in
railroads.

The heart of the DEA technique lies in finding the “best” virtual
producer for each real producer. If the virtual producer is better than
the original producer by either making more output with the same
input or making the same output with less input, then the original pro-
ducer is inefficient. The procedure of finding the best virtual pro-
ducer can be formulated as a linear program. Assume there are data
on Kinputs (denoted by X, i =1,2, . . ., K) and moutputs (denoted by
Y. j=1.2,..., m) on each of N producers or DMUs. The k+n input
matrix, X, and the mn output matrix, Y, represent the data of all N
DMUs. The purpose of DEA is to construct a frontier that envelops
all data points representing the efficiency of all DMUs under consid-
eration and calculate the efficiency score for each DMU. For the sim-
ple example of an industry in which one output is produced using two
inputs, it can be visualized as a number of intersecting planes form-
ing a tight cover over a scatter of points in two-dimensional space.
The problem of determining the efficiency score for each DMU,

(r=1,2,...,N) can be formulated as the following linear program-
ming problem (3):

2 r-n,] uj yr,j
max 0, = =— 1)

Zi=lvixr,i
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forr=1,2,...,N

0, = efficiency score for DMU;,
Y:j = amount of output j produced by DMU;,
X = amount of input i used by DMU;,

U; = decision variable representing the weight for output j, and
V; = decision variable representing the weight for input i.

Given the inputs and outputs, the linear programming problem for-
mulated in Equation 1 can be solved for the weights (U; and Vi) N times,
once for each DMU in the sample. A value of 6 for each DMU can then
be calculated from the inputs, outputs, and the corresponding weights.

Because of its nonparametric feature and its ability to combine
multiple inputs and outputs, DEA has been found to be a powerful
tool when used appropriately. A few of the characteristics that make
DEA powertul are listed below:

® DEA can handle multiple input and multiple output models.

® DEA does not require an assumption of a functional form
relating inputs to outputs.

® DMUs are directly compared against a peer or combination
of peers.

e Inputs and outputs can have different units.

The same features that make DEA a powerful tool can also cre-
ate problems. The following limitations must be considered when
choosing whether to use DEA:

® As an extreme point technique, DEA is sensitive to noise (even
symmetrical noise with zero mean) such as measurement errors.

® DEA is a technique for estimating “relative” efficiency of a
DMU as compared with its peers instead of a “theoretical maximum.”
It does not provide any information on the maximum efficiency that
a DMU can achieve.

® Asanonparametric technique, DEA does not allow conventional
statistical hypothesis tests.

® The standard DEA approach has the disadvantage that it cannot
distinguish between changes in relative efficiency brought about by
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movements toward or away from the efficiency frontier in a given
year and shifts in this frontier over time.

e The DEA method assigns mathematically optimal weights to
all inputs and outputs being considered. It empirically derives the
weights so the maximum weight is placed on those favorable vari-
ables and the minimum weight is placed on the unfavorable variables.
The underlying assumption of this method is that it is equally accept-
able to specialize in producing any output or consuming any input.
In many cases, this type of free specialization without weight
restrictions is not acceptable or desirable and may lead to unreliable
conclusions.

ASSESSING CANADIAN PARATRANSIT
SYSTEMS BY USING DEA

Description of Data

The data used in this research are provided by CUTA as part of the
annual publication entitled Summary of Canadian Transit Satistics
Operating Data. The published data include annual operating statis-
tics and trends of all Canadian urban transit systems. The data used
in this analysis are paratransit-specific and cover the period from
January 1, 2001 to December 31, 2003.

The data in the annual publication include both publicly and pri-
vately operated transit systems providing conventional and special-
ized transit services to urban municipalities in Canada. Because
transit services in Canada are not subsidized by the federal govern-
ment, there is no uniform information requirement, and all data are
submitted to CUTA on a voluntary basis. As a result, the data ele-
ment definitions and accounting procedures employed by individual
systems may vary considerably. Also, fare structure, service poli-
cies, subsidy levels, and the local operating environment may vary
from system to system and from province to province. Therefore,
caution must be taken in comparing the performance of different
transit systems.

The data contain general information for both conventional transit
services and specialized transit services. The data for specialized tran-
sit services are used to analyze the efficiency of paratransit systems.
It should be noted that the database does not include information on
community bus services and some private nonprofit paratransit ser-
vices (for example, transportation service provided by Canadian Can-
cer Society). Table 2 provides a summary of operating statistics of all
paratransit systems in Canada for the analysis period.

TABLE 2 Summary Statistics of Canadian Paratransit, 2000—-2003

2000 2001 2002 2003
Number of transit systems reporting 60 60 60
Total vehicle kilometers 52,465,836 52,524,934 55,649,453 55,753,517
Total vehicle hours 2,704,238 2,804,652 2,894,866 2,917,468
Passenger boardings 10,870,147 11,126,423 11,640,015 11,792,766
Total direct operating expenses 185,447,066 197,224,952 215,068,952 231,337,741
Total operating revenue 17,595,185 18,631,352 19,740,612 20,449,070
Nonaccessible cars 214 173 360
Accessible vans and minivans 716 677 627 794
Small buses 575 713 827 726
Total employees 2,350 2,361 2,388 2,472
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Inputs and Outputs

The first step in a DEA is to identify the inputs and outputs that can
be potentially used to define the efficiency of a paratransit system.
Unlike many other industries in which output (e.g., consumer prod-
ucts) consists of clearly identifiable objects, the output of a paratran-
sit agency (or transit agency in general) is service that may or may not
be actually used by the consumers—paratransit users. For example,
the seating capacity of a paratransit vehicle assigned to a route may
not be fully utilized (i.e., not all seats are used), which means the ser-
vice produced is not the same as the service that is actually utilized.
As aresult, the amount of paratransit service is often measured differ-
ently, either by the amount of service produced or by the amount of
service actually “consumed” or used. An example for the amount of
service produced is total vehicle kilometers serviced. Example mea-
sures for the amount of service used are total passenger kilometers and
total number of passengers serviced. Because this research is con-
cerned with technical efficiency (i.e., output produced versus input),
measures for the amount of service produced are considered as system
output. More specifically, a single output measure is used—revenue
vehicle kilometers—which is defined as the total kilometers traveled
while in revenue-generating service. The use of revenue vehicle kilo-
meters implicitly avoids these vehicle mileages that are nonproduc-
tive and should not be counted as being contributive to system
efficiency (e.g., deadheading, training, road tests, maintenance, or any
auxiliary passenger services).

For system input, three input quantities (labor, fuel, and capital)
are considered:

® Labor is measured as the total equivalent number of full-time
employees who are hired to provide the paratransit service, including
operators, maintenance, and administrative personnel. A part-time
employee could be counted as one-half of a full-time employee.

e Fuel is usually measured by the total annual amount of fuel used
by the system (in liters). However, the CUTA database includes only
the annual fuel expenses. Therefore, this study uses fuel expenses as
a measure of fuel consumption.

e Capital is the total number of vehicles used by the system.

Efficiency Model

With the inputs and outputs identified in the previous sections, the
basic DEA model for a given paratransit system can be formulated
as follows:

e l“IlKr
max =———
v\V. +v,F +Vv,E

@

subject to

ulKr

———————— <] for all paratransit systems
v\V. +Vv,F +Vv,E

u>0v,...v,>0r=12,...,29
where

6, = efficiency score of the paratransit system r,

K, = total revenue vehicle kilometers provided by para-
transit system r,

V, = total number of vehicles used in service by para-
transit system I,
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F. = total fuel expenses incurred by paratransit system ,
E, = total number of employees hired by paratransit
system r, and
Uy, Vj, Vu, V3 = decision variables representing weighting factors
for the output and input factors.

The software package GAMS (General Algebraic Modeling Sys-
tem, GAMS Development Corporation) was used to solve the formu-
lated linear programming problems. Table 3 provides the solution
results indicating the efficiency of individual paratransit systems in
Canada for each year (note that the names of the municipalities were
removed for confidentiality). From these results, the following
observations can be made:

® The technical efficiency of Canadian paratransit systems varies
significantly across systems with values ranging from 0.164 to

TABLE 3 Efficiency Scores of Canadian Paratransit Systems,
2001-2003

Municipality % Change, % Change,
Code 2001 2002 2003 2002-2001  2002-2003
Cl1 0.601 0.635 0.654 5.66 2.99
C2 0.532 0.470 0.349 -11.65 —25.74
C3 0.855 0.633 0.655 —25.96 3.48
C4 0.883 1.000 0.984 13.25 -1.60
C5 0.841 1.000 0.751 18.91 —24.90
Co 0.164 0.168 0.232 2.44 38.10
Cc7 0.530 0.524 0.562 -1.13 7.25
C8 0.671 0.631 0.552 —-5.96 -12.52
c9 0.798 0.736 0.772 =171 4.89
C10 0.777 0.760 0.754 -2.19 -0.79
Cl11 0.411 0.541 0.524 31.63 -3.14
Cl2 0.658 0.777 0.754 18.09 -2.96
C13 0.619 0.758 0.613 22.46 -19.13
Cl4 0.643 0.843 0.711 31.10 -15.66
C15 0.666 0.824 1.000 23.72 21.36
Cl6 0.598 0.680 0.609 13.71 —-10.44
C17 0.684 0.716 0.665 4.68 =7.12
C18 1.000 0.504 0.481 —49.60 —4.56
C19 0.464 0.497 0.721 7.11 45.07
C20 1.000 1.000 1.000 0.00 0.00
C21 1.000 0.729 0.629 -27.10 -13.72
C22 0.644 0.782 0.895 21.43 14.45
C23 0.539 0.645 0.571 19.67 —11.47
C24 0.617 0.730 0.744 18.31 1.92
C25 0.790 1.000 0.849 26.58 -15.10
C26 0.660 0.708 0.745 7.27 5.23
C27 0.767 0.916 0.905 19.43 -1.20
C28 0.664 0.799 0.718 20.33 -10.14
C29 0.861 0.757 0.719 —-12.08 -5.02
C30 0.349 0.458 0.425 31.23 =721
C31 1.000 1.000 1.000 0.00 0.00
C32 0.704 1.000 0.349 42.05 —65.10
Average 0.6872  0.7257  0.6841 0.0799 -0.0352
Std. dev. 0.1939  0.1955 0.1941 0.1958 0.1892
Minimum 0.164 0.168 0.232 -0.496 -0.651
Maximum 1.000 1.000 1.000 0.420 0.451
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1.000. The average efficiency of all systems is 0.687, 0.725, and
0.684 for year 2001, 2002, and 2003, respectively. The variation
over the 3 years is quite consistent with a standard deviation of
approximately 0.29.

® Among all systems, the paratransit systems operated by agency
C20 and C31 consistently outperformed other systems (100% effi-
cient) over the 3-year period. These systems are the best performers
that other paratransit systems may consider as a benchmark for
improving their efficiency. This is because the efficiency score is a
measure of “relative” efficiency on how well or badly a paratransit
system is operated as compared with the most efficient ones.

® Interms of change in efficiency score over the 3 years, there were
two systems, agency C15 and C22, that experienced noticeable
increases in efficiency (over 20% increase per year).

® There were also three systems (C2, C18, and C21) whose whole
efficiency scores decreased significantly (approximately —15% per
year). It would be valuable to find out, for example, through a survey,
what actions had been taken by these systems over these years that
had led to the dramatic changes in their technical efficiency.

The paratransit service offered by system C6 is least efficient, with an
efficiency score of between 0.164 and 0.232. The service by system
C30 is ranked the second worst, with an efficiency score of between
0.349 and 0.458. Again, it would be interesting to examine the partic-
ular environments and service management methods associated with
these two cities.

EXTERNAL FACTORS INFLUENCING EFFICIENCY

As shown in the previous section, there is a significant variation in
technical efficiency across systems. To identify the sources of effi-
ciency or inefficiency associated with these systems, it is necessary to
conduct an analysis of the relationships between the efficiency scores
of individual systems and their characteristics. The system character-
istics are external variables that describe factors that may influence
the efficiency of a paratransit system but are nontraditional inputs (or
outputs). The objective of this section is to assess the impacts of var-
ious factors on the efficiency of individual paratransit systems. In
particular, the following three hypotheses are presented:

e [s the level of automation in scheduling a factor influencing the
efficiency of a paratransit system?

e [s the average vehicle travel speed a factor influencing the
efficiency of a paratransit system?

® [sdemand (e.g., density) a factor influencing the efficiency of a
paratransit system?

There are several ways in which environmental variables can be
linked to efficiency score in a DEA study. This paper uses the two-
stage method proposed by Coelli et al. (9), which involves solving a
DEA problem in the first-stage analysis with only the conventional
inputs and outputs. In the second stage, the efficiency scores from the
first stage are regressed on the environmental variables. The sign of
the coefficients of the environmental variables indicates the direction
of the influence, and standard hypotheses tests can be used to assess
the strength of the relationship.

Advantages of this two-stage method include the ability to
(a) accommodate more than one variable, (b) include both categor-
ical and continuous variables, (C) remove the need to make prior
assumptions regarding the direction of the influence of the variables,
and (d) calibrate the model easily. One disadvantage of the two-stage
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method is that if the variables used in the first stage are highly corre-
lated with the second-stage variables, then the result is likely to be
biased.

The relationship between the efficiency level and various influenc-
ing factors can be established using a regression method based on the
availability of data. The following three environmental variables are
identified as the possible factors influencing paratransit efficiency:

® Schedule is a variable used to represent the level of automation
in generating schedules and runs by a paratransit service provider.
It is expected that higher levels of automation may generate more
efficient routes and thus lead to higher technical efficiency. In this
study, a manual scheduling process is rated 4, a partially computer-
ized scheduling method is rated 2, and a fully automated scheduling
process is rated 1.

® Average speed is defined as the average ratio of travel distance
to travel time for all trips in the service area covered by a paratransit
system. Increasing average speed allows more trips to be covered
within a given time period and thus lowers outputs such as travel cost
per kilometer and vehicle operating cost. An urban transit system with
higher average speeds often implies fewer stops which may also
reduce maintenance requirements as well. Thus higher average speeds
should correlate with higher levels of technical efficiency, and vice
versa.

o User area density represents the number of users per unit area. It
is easy to understand that the closer the users’ activities are, the more
concentrated the pickup and delivery stops and the shorter the trip
length. Thus the density of users in an area should be considered when
efficiency is examined. This factor is calculated from service area and
total number of users included in the original database.

To test the hypothesis on the significance of each of these factors,
the following linear regression model is evaluated:

0, =B, +B, x schedule, + 3, x density, + B, x speed, + €, 3)

where

0, = efficiency score of paratransit system r;
Bi = model coefficients to be estimated; and
€, = a normally distributed error term.

The efficiency scores obtained from the DEA process can be
regressed directly against the three variables described previously
using the least-squares method. However, the efficiency scores
obtained from DEA may be related to each other because the effi-
ciency of one DMU was obtained using the inputs and outputs of all
other DMUs. The possible dependency among the responses (i.e.,
efficiencies) violates the independency assumption required by the
ordinary linear regression method. An implication of this violation is
that the estimated standard error of each model coefficient may not be
valid, which means it cannot be used in a normal hypothesis test for
testing the significance of an explanatory variable. A solution to this
problem is to apply the bootstrap method to obtain multiple DEA esti-
mates, which were then used in the subsequent regression analysis to
obtain model coefficients. This bootstrapping approach has been suc-
cessfully applied to obtain valid standard errors for the regression
coefficients (10). The bootstrap regression method, as applied in this
research, has the following steps:

1. Construct a sample probability distribution for each DMU of
the observed 32 paratransit systems.
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2. Generate 2,000 random samples of size 32 with replacement
from the observed sample of 32 paratransit systems. These samples
are the bootstrap samples.

3. Run the DEA for each bootstrap sample to obtain efficiency
scores.

4. Within each bootstrap sample, fit the following linear regres-
sion model:

6, = b, + b, xschedule, +b,, x density, + b, x speed,

fori=1,2,...,32; k=1,2,...,2000 4)

where 0 is the DEA efficiency score for paratransit system i in
bootstrap sample k, and by is the estimated model coefficients for
bootstrap sample k.

5. Estimate the standard error for by, s(by), by the sample stan-
dard deviation of all 2,000 bootstrap replications:

1

2,000

> (0,-B)
s(b) =11 )

where

2,000
_ 2
=

172,000

Jj=1....3

The last step is to calculate the t-statistic [t = /()] and then
compare the calculated t to the critical value ty 5 from the Stu-
dent t-distribution with degree of freedom equal to 100 —4 — 1 =95.
If 1> to oos, reject the null hypothesis Hy : I;=0, in favor of H, : I # 0,
and conclude that the jth factor influences the efficiency of paratransit
system at o. = 0.05 significant level. Otherwise, the null hypothesis
H, : I,=01s tenable and the null hypothesis that the jth factor does not
influence the efficiency of the paratransit systems at o. = 0.05 signifi-
cant level cannot be rejected. The bootstrap procedure was again
coded in GAMS. Table 3 shows the results of calibration.

Results from both ordinary regression and bootstrap regression, as
shown in Table 4, indicate that both user area density and the average
speed had a statistically significant impact on the technical efficiency
of a paratransit system. The positive coefficients associated with these
two variables make intuitive sense because they suggest positive cor-

TABLE 4 Results of Linear Regression Analysis, with All Three
Independent Variables

Method Estimates SE t-Value p-Value
OLS regression
Schedule —-0.003 0.021 -0.122 0.903
Density 0.004 0.001 2973 0.004
Speed 0.020 0.003 7.264 1.19E-10
Constant 0.233 0.067 3.476 0.0078
Bootstrap method
Schedule —-0.003 0.028 —-0.091 0.927
Density 0.004 0.002 2.254 0.027
Speed 0.020 0.004 5.515 3.17E-7

Constant 0.233 0.086 2.715 0.008
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relation between efficiency and demand density and average speed.
The variable schedule was found to be statistically insignificant. Ini-
tially, it was thought that this result might be caused by the assignment
of numerical values to the different level of automation, which did not
reflect the difference in efficiency level induced by using different
scheduling tools in reality. Subsequently, the authors tried to model
the level of automation as a categorical variable. The result was, how-
ever, the same—that is, there was no significant difference in effi-
ciency between systems with different scheduling methods. Although
this finding is somehow consistent with some empirical results of sev-
eral past studies, it does not necessarily conclude that level of automa-
tion in scheduling has no contribution to system’s efficiency at all. A
closer examination of the change in system efficiency as related to
change in scheduling method has resulted in mixed results.

As indicated in Table 5, 10 paratransit systems changed their sched-
uling tool over the study period (2001-2003). Among them, the cities
of C15, C24, and C30 changed their scheduling method from partially
computerized to fully computerized in 2002, resulting in higher effi-
ciency scores. The system C7 changed form fully computerized to
partially computerized and the efficiency score decreased slightly. For
the city of C20, its technical efficiency remained at 100% although its
scheduling tool was improved. However, the remaining five systems
introduced new scheduling tools but experienced lower levels of effi-
ciency. It is unknown whether the change in scheduling tool is related
to the efficiency from analysis of these changes. Further study is there-
fore required to confirm the effectiveness of scheduling method on the
efficiency of a paratransit system.

After the insignificant factor schedule is removed, the recalibrated
efficiency model takes the form:

0, =0.230 + 0.004 x density, +0.020 X speed, 6)

The regression analysis results for an efficiency model without the
variable schedule are listed in Table 6.

As a final analysis, this paper examines the possible relationship
between the technical efficiency of a paratransit system and its eco-
nomical efficiency as represented by its revenue to cost ratio. The
hypothesis was that those agencies that are more efficient techni-
cally should also be more efficient economically, with higher
revenue-to-operating-cost ratios. Figure 1 presents the efficiency
scores and the revenue-to-cost ratio from 2001 for all 32 agencies

TABLE 5 Scheduling Tool Changes Versus Efficiency Changes

Efficiency Schedule

Community 2001 2002 2003 2001 2002 2003

Cl1 0.600 0.593 2 1
C7 0.526 0.504 1 2
C8 0.618 0.606 2 1
C13 0.655 0.544 2 1
C15 0.664 0.730 2 1
Cl17 0.680 0.666 4 1
C20 1.000 1.000 2 1
C21 1.000 0.654 4 2
C24 0.612 0.703 2 1
C30 0.349 0.407 2 1
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TABLE 6 Results of Linear Regression Analysis, with Only
Significant Variables

Method Estimates SE t-Value p-Value
OLS regression
Density 0.004 0.001 3.036 0.003
Speed 0.020 0.003 7.264 8.430E-11
Constant 0.230 0.060 3.834 2.292E-4
Bootstrap method
Density 0.004 0.002 2.301 0.024
Speed 0.020 0.004 5.591 2.244E-7
Constant 0.230 0.076 3.036 0.003

considered in this study. Figure 2 presents the data in a slightly dif-
ferent way, in which efficiency scores for all 3 years are plotted
on the horizontal axis versus revenue-to-cost ratio on the vertical
axis. Based on these two plots, there appears to be very little cor-
relation between technical operating efficiency and revenue-to-cost
ratio, underscoring the difference between these two efficiency per-
spectives and the need to consider both in benchmarking different
paratransit systems.

CONCLUSIONS

The paratransit agencies need tools and guidelines that can be used to
benchmark their performance against their peers and to identify the
important controllable factors that affect the efficiency of their service
systems. This research has introduced the data envelopment analysis
approach for addressing the problem of determining the technical
efficiency of paratransit systems. Three years of operating data from
32 Canadian paratransit agencies were used in this analysis. The
following is a list of the major findings and conclusions:

® DEA was found to be effective and relatively easy to use for
quantifying the technical efficiency of paratransit systems. Based on
the case study of Canadian paratransit systems, it was found that
efficiency score was quite sensitive to systems with a wide spread
of variation. Large variation in efficiency estimates facilitates the
investigation of factors contributing to the efficiency of individual
systems.
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e To identify the factors that influence the technical efficiency of
paratransit systems in Canada, a linear regression analysis was con-
ducted to relate technical efficiency of paratransit systems to various
environmental factors. It was found that demand density and average
travel speed had a significant impact on paratransit efficiency. The
regression analysis indicates that higher efficiency is associated with
higher demand density and higher average speed. This result sug-
gests that paratransit agencies can improve their efficiency by locat-
ing their stations closer to the areas of higher user density, providing
training to the drivers and adopting new types of vehicles for faster
passenger loading and unloading. The analysis, however, could not
confirm the effect of the scheduling method used by a paratransit
agency in generating daily service runs.

e The analysis does not show any significant difference between the
ordinary linear regression method and the bootstrap method, which has
been proposed in literature to address the issue that DEA is sensitive
to random errors. This result could be interpreted as the robustness of
the efficiency estimates from DEA and the regression model.

This research is limited in a number of aspects because of limited
availability of operating data. Future research is needed and should
focus on the following areas:

e [t would be valuable to conduct a survey of paratransit systems
to obtain more accurate and detailed information on inputs, outputs,
environmental factors, service management factors, and distinctive
operating practices.

® [t is necessary to perform more extensive analysis of the
sources of efficiency and inefficiency and influencing factors. It is
important of investigate the effects of other independent variables
on paratransit efficiency, such as peak-base ratio of demand or fleet,
dedicated service versus nondedicated service ratio, whether or not
the employees are unionized, and so forth.

e Future efforts should also be devoted to the development of
guidelines that paratransit agencies can use to improve their service
performance.

e Economic efficiency of a paratransit system is also of critical
importance to the transit industry and the future development of para-
transit services. Technical efficiency score calculated using DEA is
a “relative” score, representing how well a firm is operating com-
pared with its peers, and it is not necessarily related to the economic
efficiency of a system.
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FIGURE 1 Technical efficiency and revenue-to-cost ratio.
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